
A HIGH SPEED BIAXIAL TABLE CONTOUR ERROR CONTROLLER

Helder B. Lacerda
Federal University of Santa Maria, Manufacturing and Machine Design Department (CT -
DFPM), 97105-900 – Santa Maria (RS), Brazil
Eduardo M. Belo
University of São Paulo, São Carlos Engineering School, Mechanical Engineering
Department, 13560-970  - São Carlos (SP), Brazil

Abstract. A contour error controller (CEC) works simultaneously with the biaxial table PID
controllers, helping them. The calculus of the orthogonal path deviation (contour error) is
performed with an additional term in the equation, resulting in a more accurate value and
enabling the use of this type of motion controller at higher feedrate. The response results are
compared with those of common PIDs and non-corrected CEC in order to analyse the
effectiveness of this controller over the system.
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1. INTRODUCTION

Koren and Lo (1992) classified the sources of path error deviation in machine tools into
three categories: mechanical hardware deficiencies (backlash, non-straightness, etc.), cutting
process effects (tool deflection, tool wear, thermal deformation, etc.) and the controller and
drive dynamics. The total dimensional error is a combination of the errors from these sources.
The first and the second error sources can be minimised by improving the quality of the
mechanical hardware or by using compensation techniques. The third set of error sources can
be reduced by improving the motion control algorithms. Machine tool builders frequently
overlooked this error source, but it can be the dominant one, especially in high speed
machining.

Contour error motion controllers were designed in the beginning of the 80’s by Koren
(1980) to improve machine tool contouring performance by using a different approach than
the usual one. While P, PID, state-feedback and feedforward controllers are intended to reduce
the axial positioning errors, the contour error controller had the philosophy that its unique
objective is the elimination of the contour error. It helps and works together with the machine
axial controllers. The problems with this kind of controllers are the necessity of a fast
processor to do real time calculations and the lack of accuracy when tracking non-linear
contours at high speeds. The first problem is naturally being solved by the evolution of the
microprocessors and the latter is the main objective of this paper. An additional term is



introduced in order to make better contour error estimation in high speed contouring
operations. Simulations performed with Simulink® software (Hicklin, 1992) and actual
experimental data support these ideas.

2. AXIS DYNAMIC MODEL

A non-linear dynamic model of a PID controlled biaxial table is used to simulate the
system. Each axis consists of a DC motor, ballscrew and carriage. There is Coulomb friction
in the ballscrew and guideways. Inertia, backlash and cutting forces are the other disturbance
effects. There are thermal deformations in all these elements, but they were not considered
here, because the axis temperature variations are supposed small. Guideways and ballscrew
pitch errors were also not considered. The idealised linear motion axis model is shown in
Figure 1, where I1  is the sum of the motor and ballscrew inertia, I2 is the equivalent carriage
plus load inertia, K is the  combined axis stiffness coefficient and B is the damping
coefficient.

Figure 1 - Idealised linear motion axis model.

 The torque from the motor is Tm and θ1 and θ2  are the angular displacements at the
motor and carriage positions, respectively. The motion equations were obtained by making the
torque summation equal to zero. The DC motor equation was taken from Kuo (1985). In the
state space form, the following set of equations were obtained, where ia is the armature
current, La  is the electrical inductance, Ra  is the armature electrical resistance, Kb is an
electrical constant, va  is the motor applied voltage and Tf  is the Coulomb friction:

   u(t)BX(t)A(t)X ⋅+⋅=�                  (1)

where:

   [ ]T
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The output equation is given by eq. (2) where  "   is the ballscrew pitch (m/rad) and y(t) is
the axial displacement.

  [ ] X(t)y(t) ⋅= 0000 �           (2)

3.  THE CONTOUR ERROR CONTROLLER (CEC)

The axial controllers and CEC can be seen in the simplified block diagram shown in
Figure 2. It consists of two main parts: the contour error mathematical model and the control
law, which can be a P, PID, Fuzzy Logic (see Lacerda and Belo, 1996 and 1997a) or another
type of controller. Note that there is a coupling between the axes. The interpolator sends
reference command signals to each axis that are compared with the axial positions. The
resulting axial tracking errors feed the axial controllers, whose function is to move the tool to
the reference point R (see Figure 3), thus reducing these errors. The contour error model
utilises the interpolator data and error signals to calculate the contour error in real time. For
straight paths, the contour error is the PQ segment shown in Figure 3 and is obtained by
simple geometric calculation, resulting:

  αα cos.Esin.EPQ yx −=   (3)

where Ex and Ey are the axial errors and α is the angle between the tangent of the
instantaneous trajectory and the X axis.
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Figure 2 – Simulink® block diagram of a biaxial table with CEC.
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Figure 3 – Axial errors and contour error.

For curved paths, the contour error is the segment PS.  The segment QS can be estimated
if we assume that the arc RS approximates the hypotenuse of the triangle POR. In this case, we
can calculate the angle γ, which is a function of the delay between the reference point and the
tool position and the instantaneous curvature radius of the trajectory, ri:

  
i

yx

r

EE 22 +
≅γ   (4)

The instantaneous curvature radius ri and centre Ci can be easily calculated by using the
positions of three points pertaining to the trajectory, see Lacerda and Belo (1997b). The
interpolator supplies these data. In Figure 3, projecting the segment QCi in the direction of the
perpendicular to the trajectory tangent at reference point R,  yields:

  QCi . cos γ  ≅   ri   (5)
or

  (QS + ri ) . cos γ  ≅   ri   (6)

After a few steps, the segment QS is given by:

  QS ≅  ri . (sec γ - 1)   (7)

The proposed contour error mathematical model is simply the sum of the segments PQ and
QS:

  ).(secrcos.Esin.E iyx 1−+−≅ γααε   (8)

The contour error is fed into the controller, which sends appropriate correction signals to
the individual axes in order to take the tool to point S, in the desired path. In this paper, a PID
controller performs the control law.
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4. CONTOUR ERROR MODELS TEST

The objective of this simulated test is to compare the proposed contour error
mathematical model with three others found in the literature, see Kulkarni and Srinivasan,
1989; Koren and Lo, 1991; Chuang and Liu,  1991. During this test, the axial PID controllers
controlled the carriages motions, exclusively . The CEC algorithm was disabled because the
interest is on the contour error calculation. The test consists in tracking a 20 mm diameter
circle at constant feedrates. The contour error analytical value is obtained by eq.(9), using the
distance between two points: the centre of the circle  (xc , yc ) and the tool position (xp , yp ).
This  was used as a standard for comparison.

  R)yy()xx( cpcp −−+−= 22ε   (9)

Initially, a 1 m/min feedrate was chosen to evaluate the model behaviour at a low
velocity. The test results (Figure 4) show that all the obtained curves coincided with the
analytical curve, thus indicating good accuracy and precision at this velocity.

The feedrate is now increased to 25 m/min and the test results are shown in Figure 5. It
can be observed that the Kulkarni and Srinivasan (1989), Koren and Lo (1991) and Chuang
and Liu (1991) contour error mathematical models fail in this test, resulting in large
discrepancies between the curves. The proposed model curve error still coincided with the
analytical error curve. The maximum absolute error, obtained by inspection of the numerical
values, is 4 µm. This result shows that the proposed contour error mathematical model (eq. 8)
is suitable for contour error controllers applied to high speed machine tools.
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Figure 4 – Contour error mathematical models comparison. Feedrate = 1 m/min
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Figure 5 - Contour error mathematical models comparison. Feedrate = 25 m/min.

5. SIMULATED CIRCULAR TEST

The test procedure was initiated by the optimal adjustment of the axial PID controllers
gains (see Ästrom and Hägglund, 1995) by using the Matlab® optimisation toolbox function
FMINS, which uses a Nelder-Mead type simplex search method. The performance criterion is
the axial error when tracking a sinusoid. The PID gains are the project variables. The objective
is to minimise the axial errors under the constraint that controller output must be in the range
± 10 volts. After this, the gains of the PID embedded in the CEC were obtained by using the
contour error (eq. 9) as the performance criteria with the same constraint as before. This
approach resulted in good initial PID gain estimates, but final “manual tuning” was necessary
to improve the tracking performance. These gains were not modified during the test. Initially,
the CEC algorithm was disabled and the axial PID controllers tracked a 40 mm diameter circle
at constant  18.5 m/min  feedrate.  The  results  can  be viewed in Figure 6 and Table 1, which
shows the normalised IAE (integral absolute error) and the maximum circularity error for each
test. It is important to note that at this  feedrate,  the  test  duration  is  only 400 ms. After this,
the CEC is enabled with the contour error calculated by eq. (3), like in Srinivasan and
Kulkarni (1990). The test is performed again, resulting in the curve shown in Figure 6.
Finally, the contour error equation is changed to eq. (8) and the circle is tracked again. In
Figure 6, there is a magnifying factor of 10x applied to error values. The errors in the first
quarter of the circle are bigger because the system starts from rest. It can also be observed a
kind of error known as “quadrant glitch” due to friction and inertia. It appears where there is
an inversion of the axis motion direction (each 90o).
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Figure 6 - Comparison between common axial PID and CEC for a circular contour. Circle
radius = 20 mm. Feedrate = 18.5 m/min. Magnifying factor: 10x ; Marks gap = 200 µm.

Table 1 – Normalised IAE and circularity error  for the simulated circular test

Controller IAE Circularity error [µm]
PID only 1.000 925
CEC eq.(3) 1.325 607
Proposed CEC 0.104 222

6. TEST BENCH DESCRIPTION

The test bench consists of two linear motion axes mounted in the X-Y configuration
shown in Figure 7. Each axis is powered by a DC brushless motor, which  is  fed  by  a  power
amplifier. The  motor  is coupled with a  5 mm  pitch  ballscrew. An algorithm created with
the LabView® software1 running in a PC (personal computer) with a 233 MHz Pentium
processor  controls  the  axes. The PC is equipped with an analogue  output (AO)  board  and a
counter board. The AO board sends a ± 10 volts signal to the motor amplifiers. The rotary
encoders provide the position feedback signal with 1000 pulses per revolution, resulting in a 5
µm resolution. The trajectory  is verified  by a   KGM 101®  bidimensional  optical  encoder2

which  consists  of   a  circular  grid  plate   (160  mm  diameter)  which  carries  two  line
grids

                                                          
1 LabView is a trademark of National Instruments Corp.
2 KGM 101 is a trademark of  Heidenhaim Corp.



Figure7 -  The X-Y table and KGM101®.

orthogonal to each other and an optical scanning head, which have two optical reader units
disposed 90 degree each other. It simultaneously lights the grid and observes the reflected
light. The grid plate is attached to the upper carriage (Y) and the head to the table support. The
signal is interpolated in 1024 segments, resulting in a resolution of about 0.1 µm. A PC is then
used for storing and further processing of the recorded data.

7. EXPERIMENTAL CIRCULAR TEST

The closed-loop (ultimate gain) tuning procedure based on the classical work of Ziegler
and Nichols (1942) was used to adjust the gains of the axial PID. The system oscillated a
little, but an increase in the derivative time was sufficient to damp it. The adjustment of  CEC
is more complex, because there is no suitable standard technique to follow in this case.
Starting from the PID gains used in the simulated test, a manual tuning was performed which
was guided by prior knowledge of the behaviour of the PID controllers. A contour error graph
and IAE error criteria displayed on a virtual panel created with the LabView® software were
of great value in helping to achieve a compromise  between minimum error and system
stability. A circular test was performed by using the same procedure as was used in the
simulation. The results can be seen in Figure 8 and Table 2. They show that the proposed CEC
(eq.8) can reduce both the IAE and the circularity error when compared with the system
driven only by the PID controllers and by the CEC of eq.(3).
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Figure 8 - Comparison between common axial PID and CEC for a circular contour. Circle
radius = 20 mm. Feedrate = 18.5 m/min. Magnifying factor: 5 ; Marks gap = 200 µm.

Table 2 – Normalised IAE and circularity error  for the experimental circular test

Controller IAE Circularity error [µm]
PID only 1.000 2916
CEC eq.(3) 0.629 1983
Proposed CEC 0.396 1218

8.  CONCLUSION

The main contribution of this paper is the proposed contour error mathematical model. It
is simple, accurate and almost insensible to feedrate, thus enabling the use of this type of
cross-coupled controllers in high speed machine tools. The simulation results showed that the
contour error mathematical models used in earlier controllers are not suitable for high speed
machine tools. The experimental results showed a smaller improvement than expected when
compared with the other two mentioned controllers. This fact is due to the limitations of the
LabView® software and the limitations of the PID controller embedded in the CEC.
Therefore, the benefits due to the improvement in the contour error estimation when using the
proposed mathematical model were partially masked by these physical limitations. A better
result can be expected by using a more effective software than LabView® and a better
controller than the PID. Another contribution of this work is the non-linear, fifth order
dynamic XY table simulator, which include the system elasticity and Coulomb friction. It is



able to reproduce well the behaviour of the physical system and was very useful in the
development of this and previous works of the authors.
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